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Abstract. One-dimensional nonequilibrium kinetic Ising models evolving under the competing
effect of spin–flips at zero temperature and nearest-neighbour spin exchanges exhibiting a parity-
conserving (PC) phase transition on the level of kinks are investigated here numerically from
the point of view of the underlying spin system. The dynamical persistency exponent2 and
the exponentλ characterizing the two-time autocorrelation function of the total magnetization
under nonequilibrium conditions are reported. It is found that the critical fluctuations at the
PC transition have a strong effect on the spins: the behaviour becomes non-Markovian and the
above exponents exhibit drastic changes as compared with the Markovian Glauber–Ising case.
In this context the crucial importance of considering the global order parameter (instead of the
local one) is emphasized.

In recent years, two nonequilibrium dynamical critical exponents have been discovered,
which arise under nonequilibrium conditions. The nonequilibrium (short-time) exponentλ

characterizes two-time correlations in systems relaxing to their critical state in the process
of quenching from infinitely high temperatures toTc [1, 2]. Recently, one more critical
exponent was proposed [3], the persistence exponent2, associated with the probability
p(t) ∝ t−2, that theglobal order parameter has not changed sign up to timet after a
quench to the critical point [4]. For some known examples, cited in [4], the scaling law

2Z = λ− d + 1− η
2

(1)

is satisfied (hered is the dimensionality andη is the static critical exponent of the order
parameter correlation function), which has been derived assuming that the dynamics of the
order parameter is a Markovian process. In general, however,λ and2 have been proposed
[4] to be independent, new critical dynamical exponents.

One of the soluble examples is thed = 1 Ising model with Glauber kinetics. In this
case the critical temperature is atT = 0, the transition is of first order and as shown in
[4], the persistence exponent is2 = 1

4 for the global order parameter which is the total
magnetizationM(t). Moreover,λ is known to beλ = 1 in this model. The aim of this
paper is to study these new dynamical critical exponents in a simplenonequilibrium Ising
system (NEKIM) introduced in [5]. In the plane of two characteristic parameters of the
NEKIM transitions rates (δ andpex, see later) the phase diagram of NEKIM consists of a
line of second-order phase transition points for the kinks from an absorbing to an active
state which belongs to the parity conserving (PC) universality class [6, 7, 5, 8–10]. The
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absorbing phase is doubly degenerate, an initial state decays algebraically to the stationary
state which is one of the absorbing ones (all spins up or all spins down, provided the initial
state has an even number of kinks) and the whole absorbing phase behaves like a critical
point with power-law decay of correlations, as at the Glauber–Ising point (δ = 0, pex = 0).
This first-order transition atT = 0 of the Ising system disappears at the PC line and is, of
course, absent in the whole active phase of the kinks.

The critical fluctuations of the PC transition exert a pronounced effect on the critical
behaviour of the underlying spin system as found earlier [11] thus, for example the classical
dynamical exponentZ, defined, as usual throughτ ∝ ξZ with ξ ∝ p−ν was found to be
Z = 1.75(1) instead of the Glauber–Ising value ofZ = 2. (We note here thatp = e−

4J
kT

plays the role of(T − Tc/Tc) in one dimension withTc = 0 and the static exponents are
defined as powers ofp for T → 0).

The question arises how the citical fluctuations of the PC transition affect the other two
critical dynamical exponents2 andλ.

Before entering into the details of our results for2 andλ, the model will be described
in some detail.

In NEKIM the system evolves under a combined effect of spin–flips and spin–exchanges.
The spin–flip transition rate in one dimension for spinsi (si = ±1) sitting at sitei is [12]:

wi = 0

2
(1+ δsi−1si+1)

(
1− γ

2
si(si−1+ si+1)

)
(2)

whereγ = tanh 2J/kT (J denoting the coupling constant in the Ising Hamiltonian),0 and
δ are further parameters. AtT = 0, γ = 1 and there are two independent nonzero rates
0
2 (1− δ) and 0

2 (1+ δ), responsible for random walk, and pairwise annihilation of kinks,
respectively.

The spin–exchange transition rate of nearest-neighbour spins (the Kawasaki[13] rate
at T = ∞) is wii+1 = 1

2pex[1 − sisi+1], wherepex is the probability of spin exchange.
Spin–flip and spin–exchange have been applied alternately.

In this system, atT = 0, a PC-type phase transition takes place. In [5] we have
started from a random initial state and determined the phase boundary in the (δ, pex)
plane. In the following we will choose a typical (relatively free from transients) point
on this phase diagram and make simulations at this point. The parameters chosen are:
0 = 0.35, pex = 0.3, δc = −0.395(2). In the simulations the spin–flip part has been applied
using two-sublattice updating. We then stored the states of the spins and madeL (size of
the system) random attempts of exchange always using the stored situation for the states
of the spins before updating. This all together is considered as one time-step of updating.
(Usual MC update in this last step enhances the effect ofpex and leads toδc = −0.362(1).)

In [4] it has been argued that for studying nonequilibrium critical dynamics, theglobal,
rather than the local order parameter should be considered. The nonequilibrium nature of the
problem under consideration is due partly to the model itself and partly to the conditions of a
quench fromT = ∞ to 0. To realize such quench, we will restrict ourselves to completely
random initial states and follow the behaviour of the system using the rules described
above. The persistency exponent2 is defined via the probabilityp(t) that theglobal order
parameter, which in our case is the total magnetization:〈Mk=0(t)〉 = 1

L
〈∑i si(t)〉, has not

changed sign up to timet :

p(t) ∝ t−2. (3)

Finite-size scaling (FSS) applied to the persistence problem [4] leads to the form,

p(t) = L−2Zg(t/LZ). (4)
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Figure 1. p(t)La , a = 2Z, plotted againstt/LZ with Z = 1.75 and2 = 0.65, 0.67, 0.69. For
clarity the 0.65 and 0.69 data have been multiplied and divided by a factor of 2, respectively. The
simulational data exhibited here have been obtained forL = 100, 200, 400, 800 sized systems
labelled by different symbols, for statistical averages between 3× 106–105 samples.

Simulations have been carried out in the range 506 L 6 2000 with periodic, as well
as antiperiodic, boundary conditions and for at least 105 independent runs. Figure 1 shows
those of our results which have the best statistics with averages over up to 106 independent
random initial configurations (those configurations, however, for whichM(0) = 0 exactly,
were discarded) with periodic boundary conditions forL = 100, 200, 400 and 800. Using
Z = 1.75(1) [11] the best fit corresponds to2 = 0.67(1). Our simulations with antiperiodic
boundary conditions, allowing only an odd number of kinks, have led to the same value
of 2 as above though, of course, the form of the scaling functiong(t/LZ) in this case is
different. For comparison we have also simulated the exactly soluble Glauber–Ising case
and found the expected value of2 = 0.25 within the accuracy of the simulations.

The local autocorrelation function defines the new exponentλ [1, 2]:

A(t, 0) = 1

L
〈
∑
i

si(0)si(t)〉 ∝ t− λ
Z . (5)

We have made simulations for this quantity, starting with a random initial configuration
and allowing the system to evolve according to the rule of NEKIM as described above.
Averages have been taken over random initial configurations in a chain of lengthL = 1000.
Our results are shown in figure 2. The best fit has been obtained withλ = 1.49(3), using
Z = 1.75(1). For comparison, numerical results for the corresponding quantity in the
Glauber–Ising limiting case are also displayed in figure 2. It is worth mentioning, that data
for t 6 10 had to be discarded in both cases; power-law behaviour is seen only for later
times; this does not change if the number of averages taken is increased even by an order
of magnitude.

Following [4], we will now study the two-time autocorrelation function for theglobal
order parameter:Aglobal(t1, t2) = L〈Mk=0(t1)Mk=0(t2)〉 or rather its normalized form,
namely

a(t1, t2) = Aglobal(t1, t2)/
√
S(0, t1)

√
S(0, t2) = f

(
t1

t2

)
. (6)

Here S(0, t) = L〈 1
L

[
∑

i si(t)]
2〉 is the structure factor at the ferromagnetic peak and
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Figure 2. Time dependence of the local autocorrelation functionA(t, 0). L = 1000 and the
number of averages over independent random initial states was 1.5× 105. The Glauber–Ising
case is shown for comparison.

the second equality follows from the scaling assumption. Moreover, fory → ∞,
f (y) ∼ y−(λ−d+1−η/2)/Z is the expected power-law behaviour. Nevertheless, if the process
is Markovian, the power-law behaviour off (t1/t2) has to hold for allt1 > t2 as shown in
[4].

The second moment of the global magnetization (structure factor) should behave as [15]

S(0, t) ∼ t
(
d− 2β

ν

)
/Z ∼ t (2−η)/Z. (7)

We have found earlier, in [11] thatβ = 0.00(2), i.e. even at the PC point the Ising phase
transition is of first order and thusS(0, t) ∝ t1/Z. Moreover, via the above applied scaling
law d − 2+ η = 2β

ν
, η = 1.0(1) follows at the PC point, too.

Figure 3 showsa(t1/t2) as a function oft1/t2 for five different values oft2, t2 =
3, 10, 32, 50, 100. We have simulatedAglobal(t1, t2) while for the denominator we have
used the power-law behaviour as indicated above with 1/Z = 0.57. Unfortunately, it is
very hard to getAglobal(t1, t2) to a satisfactory accuracy.

This is probably because, in the scaling form ofAglobal(t1, t2), the leading-order term
is ∝ (t1/t2)(d−λ)/Z which is nonsingular in this model (it is marginal withd = λ for the
one-dimensional Glauber model while it is singular for the two-dimensional Ising case).
This means that thek = 0 mode is not special for the two-time structure factor (but is for
the equal-time structure factor); thus a power-law behaviour is a correction to scaling [18].
In more detail: the scaling form for the two-time structure factor can be written as

〈M−k(t1)Mk(t2)〉 = t (2−η)/Z2

[
L(t1)

L(t2)

]d−λ
f1(kL(t1))
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Figure 3. The normalized autocorrelation functiona(t1/t2) at the PC point for five different
values of t2 increasing in the downward direction in the range 3–100. The Galuber case is
exhibited again for comparison. Heret2 = 3, 10, 32, L = 1000 and the number of averages
over independent initial states: 1–2× 105.

+t2(2−η)/Z
[
L(t1)

L(t2)

]λ1

f2(kL(t1)) t1, t2� 1 d > λ (8)

whereL(t) ∼ t1/Z and fork → 0 f1(kL(t))→ constant. Moreover since the second term
is a correction to scaling,λ1 < d − λ. For t1 = t2 we get the usual structure factor and for
k→ 0, without the correction term, this is the form cited in [4] below their equation (16).
In this case, as we know the singular term is missing, we can say limk→0 f1(kL(t)) = 0,
scaling can still be present andλ1 plays the role ofd − λ (we will used − λ for λ1 in the
following even forλ > d).

Now, returning to figure 3, apart from the first three decades in time, fluctuations
prevent us from drawing any conclusions concerning the (correction to scaling) behaviour
of Aglobal(t1, t2), even for averages of order 105. For the quantityt1/t2 this fact narrows
down the interval of analysable data even more. Nevertheless, it is clearly seen that the
dynamic-scaling assumption expressed in equation (6) (which eventually can be expected
to hold only for t1� 1, t2� 1!) is fulfilled to an accuracy better than 1% only for values
t1 > t2 & 50. In fact this is not typical: it has been proposed [14] that in the case of
systems quenched to their critical temperature (hereTc = 0) universality and scaling may
appear at quite an early stage of time evolution, far from equilibrium, whereξ(t) ∼ t1/Z
is still small. Based on the scaling relation for such early time intervals, a new way for
measuring static and dynamic exponents has been proposed [15, 16] and also applied for
the local autocorrelation function [17]. Indeed, some of our earlier results also show that
power-law behaviour sets in for quite early times. Thus, for example in [11], concerning
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Figure 4. The dependence of the normalized autocorrelation function ont1/t2 in its first decade
for t2 = 100. L = 1000 and the number of averages was 106. The straight line is a best
power-law fit with(λ− η

2 )/Z = 0.581.

the structure factorS(0, t) ∼ tx , the power-law behaviour was already apparent for very
early times and for values ofL as low asL = 128, provided the number of averages in the
simulation was high enough (above 105). The obtained result,x = 0.57= 1/Z was used
above.

For comparison we have carried out similar simulations ofAglobal(t1, t2) for the exactly
soluble Ising–Glauber case (pex = 0, δ = 0), some of these are also exhibited in figure 3.
Here dynamic scaling is fulfilled (to a similar accuracy as above) already fort1 > t2 & 5
and the expected power-law behaviour is seen within error. It is worth mentioning that a
similar value forλ, i.e. λ = 1.0 results from simulations in the whole absorbing region
(thus e.g. forpex = 0.35, δ = 0).

In order to establish whether the process is Markovian or not at the PC point it will be
sufficient to examine the first decade in the variablet1/t2 in a region where dynamic scaling
holds. Figure 4 shows the result for the caset2 = 100, for averages over 106 independent
initial states, again takingL = 1000. For the exponent(λ−η/2)/Z the value 0.58(1) results
as a best fit, givingλ = 1.51(1) which is in accord, within error, with the value obtained
above from the local autocorrelation function. Moreover, according to equation (1), the
same exponent should equal2. Thus, supposing the Markovian property to hold has led to
contradiction because the measured value of2 is 0.67(1).

These results together with critical exponents obtained earlier in [11] are summarized
in table 1.

In summary, we have carried out numerical simulations to investigate the nonequilibrium
dynamic critical exponents2 and λ with the aim to check the Markovian nature of the
nonequilibrium Ising system in one dimension at the parity conserving phase transition point
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Table 1. Simulation data for static and dynamic critical exponents for NEKIM.

β γ ν Z 2 λ

Glauber–Ising 0 1
2

1
2 2 1

4 1
PC 0.00(1) 0.444(2) 0.444(2) 1.75(1) 0.67(1) 1.50(2)

of the phase diagram of NEKIM. On the basis of of these results we have been led to the
conclusion that the effect of fluctuations felt by the spin system at the PC transition is such
that the dynamical process becomes non-Markovian. The difference is quite pronounced,
definitely beyond numerical errors. It should be emphasized, however, that the elementary
NEKIM process is, of course, Markovian and in arriving at the above conclusion the fact
that the relaxation of theglobal order parameter has been considered is of paramount
importance.
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